Constitutively active RhoA inhibits proliferation by retarding G(1) to S phase cell cycle progression and impairing cytokinesis.

组成型活性 RhoA 通过延缓 G(1) 期到 S 期细胞周期进程和损害胞质分裂来抑制增殖

阅读:5
作者:Morin Pierre, Flors Cristina, Olson Michael F
The actions of RhoA in cytoskeletal regulation have been extensively studied. RhoA also contributes to proliferation and oncogenic transformation by less well-characterized means. Elevated RhoA signalling has been associated with human cancer; through increased RhoA expression, mutation or elevated expression of activating Rho guanine-nucleotide exchange factors (GEFs), or from deletion or decreased expression of inhibitory Rho GTPase-activating proteins (GAPs). Unlike the Ras oncogene, constitutively-activated GTPase-deficient RhoA mutants have not been identified in tumours. To investigate the effects of active RhoA on proliferation, we generated Swiss3T3 cells that inducibly express wild-type RhoA or GTPase-deficient active V14RhoA. We found that V14RhoA inhibited cell proliferation by retarding entry into the DNA synthetic cell cycle phase and blocking successful completion of cytokinesis, resulting in an increased incidence of binucleate cells. These effects were associated with inhibition of mitogen-induced activation of the MAPK pathway, and suppression of several proteins involved in mitosis, including anillin, ECT2 and cyclin B1 which would be expected to result in reduced activation of endogenous RhoA at the cell equator. Accumulation of active RhoA protein in the midbody of cells in telophase was inhibited in V14RhoA-expressing cells, suggesting that RhoA inactivation must occur prior to re-activation. Defective cytokinesis was also associated with prominent actin structures in V14RhoA-expressing cells, which might be incompatible with equatorial furrowing. Using super-resolution imaging based on single-molecule switching, we have significantly improved the resolution of active RhoA in midbodies. These results indicate that constitutively-active RhoA antagonizes several cellular activities that contribute to proliferation, highlighting the importance for cycling between GTP/GDP-bound states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。