The JmjC domain histone demethylase Ndy1 regulates redox homeostasis and protects cells from oxidative stress.

JmjC结构域组蛋白去甲基化酶Ndy1调节氧化还原稳态,保护细胞免受氧化应激

阅读:5
作者:Polytarchou Christos, Pfau Raymond, Hatziapostolou Maria, Tsichlis Philip N
The histone H3 demethylase Ndy1/KDM2B protects cells from replicative senescence. Changes in the metabolism of reactive oxygen species (ROS) are important for establishing senescence, suggesting that Ndy1 may play a role in redox regulation. Here we show that Ndy1 protects from H(2)O(2)-induced apoptosis and G(2)/M arrest and inhibits ROS-mediated signaling and DNA damage, while knockdown of Ndy1 has the opposite effects. Consistent with these observations, whereas Ndy1 overexpression promotes H(2)O(2) detoxification, Ndy1 knockdown inhibits it. Ndy1 promotes the expression of genes encoding the antioxidant enzymes aminoadipic semialdehyde synthase (Aass), NAD(P)H quinone oxidoreductase-1 (Nqo1), peroxiredoxin-4 (Prdx4), and serine peptidase inhibitor b1b (Serpinb1b) and represses the expression of interleukin-19. At least two of these genes (Nqo1 and Prdx4) are regulated directly by Ndy1, which binds to specific sites within their promoters and demethylates promoter-associated histone H3 dimethylated at K36 and histone H3 trimethylated at K4. Simultaneous knockdown of Aass, Nqo1, Prdx4, and Serpinb1b in Ndy1-expressing cells to levels equivalent to those detected in control cells was sufficient to suppress the Ndy1 redox phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。