The insulin-IGF-1/DAF-2 pathway has a central role in the determination of aging and longevity in Caenorhabditis elegans and other organisms. In this paper, we measured neuronal insulin secretion (using INS-22::Venus) during C. elegans lifespan and monitored how this secretion is modified by redox homeostasis. We showed that INS-22::Venus secretion fluctuates during the organism lifetime reaching maximum levels in the active reproductive stage. We also demonstrate that long-lived daf-2 insulin receptor mutants show remarkable low levels of INS-22::Venus secretion. In contrast, we found that short-lived mutant worms that lack the oxidation repair enzyme MSRA-1 show increased levels of INS-22::Venus secretion, specifically during the reproductive stage. MSRA-1 is a target of the insulin-IGF-1/DAF-2 pathway, and the expression of this antioxidant enzyme exclusively in the nervous system rescues the mutant insulin release phenotype and longevity. The msra-1 mutant phenotype can also be reverted by antioxidant treatment during the active reproductive stage. We showed for the first time that there is a pattern of neuronal insulin release with a noticeable increment during the peak of reproduction. Our results suggest that redox homeostasis can modulate longevity through the regulation of insulin secretion, and that the insulin-IGF-1/DAF-2 pathway could be regulated, at least in part, by a feedback loop. These findings highlight the importance of timing for therapeutic interventions aimed at improving health span.
Temporal pattern of neuronal insulin release during Caenorhabditis elegans aging: Role of redox homeostasis.
秀丽隐杆线虫衰老过程中神经元胰岛素释放的时间模式:氧化还原稳态的作用
阅读:6
作者:Minniti Alicia N, Arriagada Héctor, Zúñiga Soledad, Bravo-Zehnder Marcela, Alfaro Iván E, Aldunate Rebeca
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2019 | 起止号: | 2019 Feb;18(1):e12855 |
| doi: | 10.1111/acel.12855 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
