PURPOSE: Most objective image quality metrics average over a wide range of image degradations. However, human clinicians demonstrate bias toward different types of artifacts. Here, we aim to create a perceptual difference model based on Case-PDM that mimics the preference of human observers toward different artifacts. METHOD: We measured artifact disturbance to observers and calibrated the novel perceptual difference model (PDM). To tune the new model, which we call Artifact-PDM, degradations were synthetically added to three healthy brain MR data sets. Four types of artifacts (noise, blur, aliasing or "oil painting" which shows up as flattened, over-smoothened regions) of standard compressed sensing (CS) reconstruction, within a reasonable range of artifact severity, as measured by both PDM and visual inspection, were considered. After the model parameters were tuned by each synthetic image, we used a functional measurement theory pair-comparison experiment to measure the disturbance of each artifact to human observers and determine the weights of each artifact's PDM score. To validate Artifact-PDM, human ratings obtained from a Double Stimulus Continuous Quality Scale experiment were compared to the model for noise, blur, aliasing, oil painting and overall qualities using a large set of CS-reconstructed MR images of varying quality. Finally, we used this new approach to compare CS to GRAPPA, a parallel MRI reconstruction algorithm. RESULTS: We found that, for the same Artifact-PDM score, the human observer found incoherent aliasing to be the most disturbing and noise the least. Artifact-PDM results were highly correlated to human observers in both experiments. Optimized CS reconstruction quality compared favorably to GRAPPA's for the same sampling ratio. CONCLUSIONS: We conclude our novel metric can faithfully represent human observer artifact evaluation and can be useful in evaluating CS and GRAPPA reconstruction algorithms, especially in studying artifact trade-offs.
A new perceptual difference model for diagnostically relevant quantitative image quality evaluation: a preliminary study.
一种用于诊断相关定量图像质量评价的新型感知差异模型:初步研究
阅读:5
作者:Miao Jun, Huang Feng, Narayan Sreenath, Wilson David L
| 期刊: | Magnetic Resonance Imaging | 影响因子: | 2.000 |
| 时间: | 2013 | 起止号: | 2013 May;31(4):596-603 |
| doi: | 10.1016/j.mri.2012.09.009 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
