The antagonistic pleiotropy theory of aging suggests that genes essential for growth and development are likely to modulate aging later in life. Previous studies in C. elegans demonstrate that inhibition of certain developmentally essential genes during adulthood leads to significant lifespan extension. PAR-1, a highly conserved serine/threonine kinase, functions as a key cellular polarity regulator during the embryonic development. However, the role of PAR-1 during adulthood remains unknown. Here we show that inhibition of par-1 either by a temperature-sensitive mutant or by RNAi knockdown only during adulthood is sufficient to extend lifespan in C. elegans. Inhibition of par-1 also improves healthspan, as indicated by increased stress resistance, enhanced proteotoxicity resistance, as well as reduced muscular function decline over time. Additionally, tissue-enriched RNAi knockdown analysis reveals that PAR-1 mainly functions in the epidermis to regulate lifespan. Further genetic epistatic and molecular studies demonstrate that the effect of par-1 on lifespan requires the AMP-activated protein kinase (AMPK), and RNAi knockdown of par-1 results in age-dependent AMPK activation and reduced lipid accumulation in the metabolic tissue. Taken together, our findings reveal a previously undescribed function of PAR-1 in adulthood, which will help to understand the molecular links between development and aging.
Inhibition of PAR-1 delays aging via activating AMPK in C. elegans.
抑制 PAR-1 可通过激活秀丽隐杆线虫中的 AMPK 来延缓衰老
阅读:6
作者:Wu Di, Cai Waijiao, Zhang Xuan, Lan Jianfeng, Zou Lina, Chen Samuel J, Wu Zixing, Chen Di
| 期刊: | Aging-Us | 影响因子: | 3.900 |
| 时间: | 2020 | 起止号: | 2020 Nov 20; 12(24):25700-25717 |
| doi: | 10.18632/aging.104180 | 研究方向: | 信号转导 |
| 信号通路: | AMPK | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
