AIM: To develop a population pharmacokinetics model of oxcarbazepine in Chinese pediatric patients with epilepsy, and to study the interactions between oxcarbazepine and other antiepileptic drugs (AEDs). METHODS: A total of 688 patients with epilepsy aged 2 months to 18 years were divided into model (n=573) and valid (n=115) groups. Serum concentrations of the main active metabolite of oxcarbazepine, 10-hydroxycarbazepine (MHD), were determined 0.5-48 h after the last dosage. A population pharmacokinetics (PPK) model was constructed using NLME software. This model was internally evaluated using Bootstrapping and goodness-of-fit plots inspection. The data of the valid group were used to calculate the mean prediction error (MPE), mean absolute prediction error (MAE), mean squared prediction error (MSE) and the 95% confidence intervals (95% CI) to externally evaluate the model. RESULTS: The population values of pharmacokinetic parameters estimated in the final model were as follows: Ka=0.83 h-1, Vd=0.67 L/kg, and CL=0.035 L·kg(-1)·h(-1). The enzyme-inducing AEDs (carbamazepine, phenytoin, phenobarbital) and newer generation AEDs (levetiracetam, lamotrigine, topiramate) increased the weight-normalized CL value of MHD by 17.4% and 10.5%, respectively, whereas the enzyme-inhibiting AED valproic acid decreased it by 3%. No significant association was found between the CL value of MHD and the other covariates. For the final model, the evaluation results (95% CI) were MPE=0.01 (-0.07-0.10) mg/L, MAE=0.46 (0.40-0.51) mg/L, MSE=0.39 (0.27-0.51) (mg/L)(2). CONCLUSION: A PPK model of OXC in Chinese pediatric patients with epilepsy is established. The enzyme-inducing AEDs and some newer generation AEDs (lamotrigine, topiramate) could slightly increase the metabolism of MHD.
Population pharmacokinetics modeling of oxcarbazepine to characterize drug interactions in Chinese children with epilepsy.
建立奥卡西平群体药代动力学模型,以表征中国癫痫患儿的药物相互作用
阅读:7
作者:Wang Yang, Zhang Hua-nian, Niu Chang-he, Gao Ping, Chen Yu-jun, Peng Jing, Liu Mao-chang, Xu Hua
| 期刊: | Acta Pharmacologica Sinica | 影响因子: | 8.400 |
| 时间: | 2014 | 起止号: | 2014 Oct;35(10):1342-50 |
| doi: | 10.1038/aps.2014.76 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
