The acetylglucosaminyltransferase GnT-â ¢ regulates erythroid differentiation through ERK/MAPK signaling.

乙酰氨基葡萄糖转移酶 GnT-⢠通过 ERK/MAPK 信号通路调节红系分化

阅读:3
作者:Wu Tiangui, Sun Yuhan, Wang Dan, Isaji Tomoya, Fukuda Tomohiko, Suzuki Chiharu, Hanamatsu Hisatoshi, Nishikaze Takashi, Tsumoto Hiroki, Miura Yuri, Furukawa Jun-Ichi, Gu Jianguo
Differentiation therapy is an alternative strategy used in treating chronic myelogenous leukemia to induce the differentiation of immature or cancerous cells toward mature cells and inhibit tumor cell proliferation. We aimed to explore N-glycans' roles in erythroid differentiation using the sodium butyrate (NaBu)-induced model of K562 cells (WT/NaBu cells). Here, using lectin blot, flow cytometry, real-time PCR, and mass spectrometry analyses, we demonstrated that the mRNA levels of N-acetylglucosaminyltransferase ⠢ ((encoded by the MGAT3 gene) and its product (bisected N-glycans) were significantly increased during erythroid differentiation. To address the importance of GnTN-acetylglucosaminyltransferase-⠢ in this progress, we established a stable MGAT3 KO K562 cell line using the CRISPR/Cas9 technology. Compared to WT/NaBu cells, MGAT3 KO significantly impeded the progression of erythroid differentiation, as shown in decreased cell color and levels of erythroid markers, glycophorin A (CD235a), and β-globin. Consistently, MGAT3 KO mitigated the inhibitory impact of NaBu on cell proliferation. During induction, MGAT3 KO suppressed the cellular phosphorylated tyrosine and phospho-extracellular signal-regulated kinase (ERK)1/2 levels. Inhibition of the ERK/mitogen-activated protein kinase signaling pathway using U0126 blocked erythroid differentiation while concurrently suppressing the expression levels of MGAT3 and bisected N-glycans. Furthermore, the lack of bisecting GlcNAc modification on c-Kit and transferrin receptor 1 (CD71) suppressed cellular signaling and accelerated the degradation of the CD71 protein, respectively. Our study highlights the critical role of MGAT3 in regulating erythroid differentiation associated with the ERK/mitogen-activated protein kinase signaling pathway, which may shed light on identifying new differentiation therapy in chronic myelogenous leukemia.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。