Cichlid fishes exhibit rapid, extensive, and replicative adaptive radiation in feeding morphology. Plasticity of the cichlid jaw has also been well documented, and this combination of iterative evolution and developmental plasticity has led to the proposition that the cichlid feeding apparatus represents a morphological "flexible stem." Under this scenario, the fixation of environmentally sensitive genetic variation drives evolutionary divergence along a phenotypic axis established by the initial plastic response. Thus, if plasticity is predictable then so too should be the evolutionary response. We set out to explore these ideas at the molecular level by identifying genes that underlie both the evolution and plasticity of the cichlid jaw. As a first step, we fine-mapped an environment-specific quantitative trait loci for lower jaw shape in cichlids, and identified a nonsynonymous mutation in the ciliary rootlet coiled-coil 2 (crocc2), which encodes a major structural component of the primary cilium. Given that primary cilia play key roles in skeletal mechanosensing, we reasoned that this gene may confer its effects by regulating the sensitivity of bone to respond to mechanical input. Using both cichlids and zebrafish, we confirmed this prediction through a series of experiments targeting multiple levels of biological organization. Taken together, our results implicate crocc2 as a novel mediator of bone formation, plasticity, and evolution.
Ciliary Rootlet Coiled-Coil 2 (crocc2) Is Associated with Evolutionary Divergence and Plasticity of Cichlid Jaw Shape.
纤毛根丝螺旋2 (crocc2) 与慈鲷颌部形状的进化分化和可塑性有关
阅读:3
作者:Gilbert Michelle C, Tetrault Emily, Packard Mary, Navon Dina, Albertson R Craig
| 期刊: | Molecular Biology and Evolution | 影响因子: | 5.300 |
| 时间: | 2021 | 起止号: | 2021 Jul 29; 38(8):3078-3092 |
| doi: | 10.1093/molbev/msab071 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
