Resonant Acoustic Rheometry (RAR) is a new, non-contact technique to characterize the mechanical properties of soft and viscoelastic biomaterials, such as hydrogels, that are used to mimic the extracellular matrix in tissue engineering. RAR uses a focused ultrasound pulse to generate a microscale perturbation at the sample surface and tracks the ensuing surface wave using pulse-echo ultrasound. The frequency spectrum of the resonant surface waves is analyzed to extract viscoelastic material properties. In this study, RAR was used to characterize fibrin, gelatin, and agarose hydrogels. Single time point measurements of gelled samples with static mechanical properties showed that RAR provided consistent quantitative data and measured intrinsic material characteristics independent of ultrasound parameters. RAR was also used to longitudinally track dynamic changes in viscoelastic properties over the course of fibrin gelation, revealing distinct phase and material property transitions. Application of RAR was verified using finite element modeling and the results were validated against rotational shear rheometry. Importantly, RAR circumvents some limitations of conventional rheology methods and can be performed in a high-throughput manner using conventional labware. Overall, these studies demonstrate that RAR can be a valuable tool to noninvasively quantify the viscoelastic mechanical properties of soft hydrogel biomaterials.
Resonant acoustic rheometry for non-contact characterization of viscoelastic biomaterials.
共振声学流变学技术用于粘弹性生物材料的非接触式表征
阅读:4
作者:Hobson Eric C, Li Weiping, Juliar Benjamin A, Putnam Andrew J, Stegemann Jan P, Deng Cheri X
| 期刊: | Biomaterials | 影响因子: | 12.900 |
| 时间: | 2021 | 起止号: | 2021 Feb;269:120676 |
| doi: | 10.1016/j.biomaterials.2021.120676 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
