Differential regulation of FGFR3 by PTPN1 and PTPN2

PTPN1 和 PTPN2 对 FGFR3 的差异调节

阅读:5
作者:Jonathan R St-Germain, Paul Taylor, Wen Zhang, Zhihua Li, Troy Ketela, Jason Moffat, Benjamin G Neel, Suzanne Trudel, Michael F Moran

Abstract

Aberrant expression and activation of FGFR3 is associated with disease states including bone dysplasia and malignancies of bladder, cervix, and bone marrow. MS analysis of protein-phosphotyrosine in multiple myeloma cells revealed a prevalent phosphorylated motif, D/EYYR/K, derived from the kinase domain activation loops of tyrosine kinases including FGFR3 corresponding to a recognition sequence of protein-tyrosine phosphatase PTPN1. Knockdown of PTPN1 or the related enzyme PTPN2 by RNAi resulted in ligand-independent activation of FGFR3. Modulation of FGFR3 activation loop phosphorylation by both PTPN1 and PTPN2 was a function of receptor trafficking and phosphotyrosine phosphatase (PTP) compartmentalization. The FGFR3 activation loop motif DYYKK(650) is altered to DYYKE(650) in the oncogenic variant FGFR3(K650E) , and consequently it is constitutively fully activated and unaffected by activation loop phosphorylation. FGFR3(K650E) was nevertheless remarkably sensitive to negative regulation by PTPN1 and PTPN2. This suggests that in addition to modulating FGFR3 phosphorylation, PTPN1 and PTPN2 constrain the kinase domain by fostering an inactive-state. Loss of this constraint in response to ligand or impaired PTPN1/N2 may initiate FGFR3 activation. These results suggest a model wherein PTP expression levels may define conditions that select for ectopic FGFR3 expression and activation during tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。