Intracranial hemorrhage (ICH) is a particularly severe form of stroke whose etiology remains poorly understood, with a highly variable appearance and onset of the disease (Felbor et al., 2006; Frizzell, 2005; Lucas et al., 2003). In humans, mutations in any one of three CCM genes causes an autosomal dominant genetic ICH disorder characterized by cerebral cavernous malformations (CCM). Recent evidence highlighting multiple interactions between the three CCM gene products and other proteins regulating endothelial junctional integrity suggests that minor deficits in these other proteins could potentially predispose to, or help to initiate, CCM, and that combinations of otherwise silent genetic deficits in both the CCM and interacting proteins might explain some of the variability in penetrance and expressivity of human ICH disorders. Here, we test this idea by combined knockdown of CCM pathway genes in zebrafish. Reducing the function of rap1b, which encodes a Ras GTPase effector protein for CCM1/Krit1, disrupts endothelial junctions in vivo and in vitro, showing it is a crucial player in the CCM pathway. Importantly, a minor reduction of Rap1b in combination with similar reductions in the products of other CCM pathway genes results in a high incidence of ICH. These findings support the idea that minor polygenic deficits in the CCM pathway can strongly synergize to initiate ICH.
Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke.
CCM通路基因之间的组合相互作用会诱发出血性中风
阅读:5
作者:Gore Aniket V, Lampugnani Maria Grazia, Dye Louis, Dejana Elisabetta, Weinstein Brant M
| 期刊: | Disease Models & Mechanisms | 影响因子: | 3.300 |
| 时间: | 2008 | 起止号: | 2008 Nov-Dec;1(4-5):275-81 |
| doi: | 10.1242/dmm.000513 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
