Conclusions
Together, our data suggested that AF could serve as a potential therapeutic agent against the aggravation of SCI in rats.
Methods
Initially, the behavior of SCI-induced rats is examined by Basso-Beattie-Bresnahan score and the inclined plane examination. Then, the immunohistochemical staining of inflammasome-related protein (for instance, NACHT, LRR, and PYD domains-containing protein 3, NLRP3) is performed in combination with enzyme-linked immunosorbent assay (ELISA) of corresponding proinflammatory factors to assess the immunomodulatory effects of AF. Further, the markers involved in oxidative stress are examined by ELISA and western blot analysis analyses.
Results
These findings indicated that AF could alleviate motor dysfunction and the loss of neuron cells in SCI-induced rats. Mechanistically, AF could attenuate the inflammatory responses by reducing oxidative stress and activating nuclear erythroid-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in SCI rats. Depleting the antioxidant capacity by inhibiting glutathione biosynthesis could counteract the anti-inflammatory activity of AF in SCI rats. Conclusions: Together, our data suggested that AF could serve as a potential therapeutic agent against the aggravation of SCI in rats.
