High-Temperature Tensile Characteristics of an Al-Zn-Mg-Cu Alloy: Fracture Characteristics and a Physical Mechanism Constitutive Model.

Al-Zn-Mg-Cu合金的高温拉伸特性:断裂特性和物理机制本构模型

阅读:6
作者:He Daoguang, Chen Yuan, Chen Shibing, Lin Yongcheng, Wu Jiafu
High-temperature tensile tests were developed to explore the flow features of an Al-Zn-Mg-Cu alloy. The fracture characteristics and microstructural evolution mechanisms were thoroughly revealed. The results demonstrated that both intergranular fractures and ductile fractures occurred, which affected the hot tensile fracture mechanism. During high-temperature tensile, the second phase (Al(2)CuMg) at the grain boundaries (GBs) promoted the formation and accumulation of dimples. With the continual progression of high-temperature tensile, the aggregation/coarsening of dimples along GBs appear, aggravating the intergranular fracture. The coalescence and coarsen of dimples are reinforced at higher tensile temperatures or lower strain rates. Considering the impact of microstructural evolution and dimple formation/coarsening on tensile stresses, a physical mechanism constitutive (PMC) equation is herein proposed. According to the validation and analysis, the predictive results were in preferable accordance with the testing data, showing the outstanding reconfiguration capability of the PMC model for high-temperature tensile features in Al-Zn-Mg-Cu alloys.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。