Orthogonal cutting simulation of EN AW 6082 T6 alloy using a coupled Eulerian-Lagrangian approach.

采用耦合欧拉-拉格朗日方法对 EN AW 6082 T6 合金进行正交切削模拟

阅读:7
作者:Dumanić Ivana, Jozić Sonja, Bagavac Petra, Bajić Dražen
The latest trends in machining research show that great efforts are being made to simulate machining processes. This paper presents the results of cutting force, feed force and temperatures when the orthogonal cutting of EN AW 6082 T6 alloy. Appropriate material model and damage model were investigated in order to perform finite element simulation with Coupled Eulerian-Lagrangian (CEL) approach. In the next step, simulations were designed based on the input parameters. The size of element in the x-direction (2 μm-10 μm), size of element in y-direction (2 μm-10 μm) and width of the workpiece (2 μm-100 μm) are considered as controllable variables The Genetic Algorithm was used to identify the optimal process parameters by which the minimum value of cutting force error, the minimum value of feed force error and minimum simulation time will be achieved. The optimal combination of the process parameters is size of elements at x-direction 8 μm, y-direction 10 μm and width of workpiece 84 μm. By utilizing the optimal input parameters cutting force error was reduced from 6.5% to 1.07% and feed force error was reduced from 6.15% to 3.12%. The results showed that the optimum size and orientation of the finite element mesh can significantly reduce the error in the prediction of cutting forces and reduce processing simulation time. In addition, it was concluded that with the CEL approach, temperatures in the cutting zone can be successfully predicted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。