Origin of micrometer-scale dislocation motion during hydrogen desorption.

氢脱附过程中微米级位错运动的起源

阅读:6
作者:Koyama Motomichi, Taheri-Mousavi Seyedeh Mohadeseh, Yan Haoxue, Kim Jinwoo, Cameron Benjamin Clive, Moeini-Ardakani Seyed Sina, Li Ju, Tasan Cemal Cem
Hydrogen, while being a potential energy solution, creates arguably the most important embrittlement problem in high-strength metals. However, the underlying hydrogen-defect interactions leading to embrittlement are challenging to unravel. Here, we investigate an intriguing hydrogen effect to shed more light on these interactions. By designing an in situ electron channeling contrast imaging experiment of samples under no external stresses, we show that dislocations (atomic-scale line defects) can move distances reaching 1.5 μm during hydrogen desorption. Combining molecular dynamics and grand canonical Monte Carlo simulations, we reveal that grain boundary hydrogen segregation can cause the required long-range resolved shear stresses, as well as short-range atomic stress fluctuations. Thus, such segregation effects should be considered widely in hydrogen research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。