Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model.

基于DSPI模型的开环控制中压电致动器非线性特性与启动误差的补偿方法

阅读:6
作者:An Dong, Li Ji, Li Songhua, Shao Meng, Wang Weinan, Wang Chuan, Yang Yixiao
Nanopositioning stages with piezoelectric actuators have been widely used in fields such as precision mechanical engineering, but the nonlinear start-up accuracy problem under open-loop control has still not been solved, and more errors will accumulate, especially under open-loop control. This paper first analyzes the causes of the starting errors from both the physical properties of materials and voltages: the starting errors are affected by the material properties of piezoelectric ceramics, and the magnitude of the voltage determines the magnitude of the starting errors. Then, this paper adopts an image-only model of the data separated by a Prandtl-Ishlinskii model (DSPI) based on the classical Prandtl-Ishlinskii model (CPI), which can improve the positioning accuracy of the nanopositioning platform after separating the data based on the start-up error characteristics. This model can improve the positioning accuracy of the nanopositioning platform while solving the problem of nonlinear start-up errors under open-loop control. Finally, the DSPI inverse model is used for the feedforward compensation control of the platform, and the experimental results show that the DSPI model can solve the nonlinear start-up error problem existing under open-loop control. The DSPI model not only has higher modeling accuracy than the CPI model but also has better performance in terms of compensation results. The DSPI model improves the localization accuracy by 99.427% compared to the CPI model. When compared with another improved model, the localization accuracy is improved by 92.763%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。