Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles.

体内损伤对健康和营养不良肌肉中神经肌肉接头的影响

阅读:3
作者:Pratt Stephen J P, Shah Sameer B, Ward Christopher W, Inacio Mario P, Stains Joseph P, Lovering Richard M
The most common and severe form of muscular dystrophy is Duchenne muscular dystrophy (DMD), a disorder caused by the absence of dystrophin, a structural protein found on the cytoplasmic surface of the sarcolemma of striated muscle fibres. Considerable attention has been dedicated to studying myofibre damage and muscle plasticity, but there is little information to determine if damage from contraction-induced injury occurs at or near the nerve terminal axon. We used α-bungarotoxin to compare neuromuscular junction (NMJ) morphology in healthy (wild-type, WT) and dystrophic (mdx) mouse quadriceps muscles and evaluated transcript levels of the post-synaptic muscle-specific kinase signalling complex. Our focus was to study changes in NMJs after injury induced with an established in vivo animal injury model. Neuromuscular transmission, electromyography (EMG), and NMJ morphology were assessed 24 h after injury. In non-injured muscle, muscle-specific kinase expression was significantly decreased in mdx compared to WT. Injury resulted in a significant loss of maximal torque in WT (39 ± 6%) and mdx (76 ± 8%) quadriceps, but significant changes in NMJ morphology, neuromuscular transmission and EMG data were found only in mdx following injury. Compared with WT mice, motor end-plates of mdx mice demonstrated less continuous morphology, more disperse acetylcholine receptor aggregates and increased number of individual acetylcholine receptor clusters, an effect that was exacerbated following injury. Neuromuscular transmission failure increased and the EMG measures decreased after injury in mdx mice only. The data show that eccentric contraction-induced injury causes morphological and functional changes to the NMJs in mdx skeletal muscle, which may play a role in excitation-contraction coupling failure and progression of the dystrophic process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。