Dual Antibacterial and Soft-Tissue-Integrative Effect of Combined Strontium Acetate and Silver Nitrate on Peri-Implant Environment: Insights from Multispecies Biofilms and a 3D Coculture Model.

醋酸锶和硝酸银联合作用对种植体周围环境的双重抗菌和软组织整合作用:来自多物种生物膜和 3D 共培养模型的启示

阅读:9
作者:Kheirmand-Parizi Marjan, Doll-Nikutta Katharina, Mikolai Carina, Wirth Dagmar, Menzel Henning, Stiesch Meike
Creation of a biological seal and efficient antibacterial qualities in the peri-implant environment is essential for the success of dental implants. Therefore, novel multifunctional strategies are being developed to address these issues, aiming at the simultaneous improvement of tissue integration and hindering pathological biofilm formation. In this study, we investigated the effect of tissue-promotive strontium acetate (SrAc), antibacterial silver nitrate (AgNO(3)), and their combination on oral soft tissue cells and an oral multispecies biofilm not only in monoculture setups but also in a three-dimensional (3D) implant-tissue-oral bacterial-biofilm model (INTERbACT model) that takes the naturally occurring interactions into account. Application of SrAc led to improved fibroblast migration in the monoculture setting, without impairment of metabolic activity, even upon additional AgNO(3) administration. Notably, the combined treatment of SrAc and AgNO(3) resulted in a synergistic antibacterial effect during biofilm formation as well as on early matured biofilms. Most interestingly, the antibacterial effect of the combined treatment was even further enhanced within the coculture setup leading to increased bacterial death and decreased biofilm volume. The 3D tissue in the coculture setup underwent the combined treatment with a notable rise in CCL20 and IL-1β levels. Histologically, only the AgNO(3)-treated groups exhibited damage to the integrity of the epithelial barrier. Therefore, the results of this study demonstrated promising dual antibacterial and tissue-integrative characteristics of combined AgNO(3) and SrAc in the dental implant environment. Additionally, the study emphasizes the importance of considering naturally occurring tissue-bacteria interactions for reliable in vitro testing of novel implant materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。