Endoplasmic Reticulum Stress-Mediated Apoptosis Induced by VR12684 Isolated from Mallotus spodocarpus in Cholangiocarcinoma Cell Line.

从野桐中分离的VR12684诱导胆管癌细胞系发生内质网应激介导的细胞凋亡

阅读:3
作者:Hahnvajanawong Chariya, Puthabaln Wissanukorn, Boonmars Thidarut, Reutrakul Vichai, Boueroy Parichart
INTRODUCTION: Cholangiocarcinoma (CCA) is a poor prognosis of a malignant tumor that has been unresponsive to conventional chemotherapeutic agents. Effective and novel therapeutic agents are urgently needed. VR12684 (isolated from Mallotus spodocarpus) has been reported to exhibit growth inhibitory activities in cancer cell lines. The present study investigated the growth inhibitory mechanisms of this compound in a human CCA cell line (KKU-M156). METHODS: The effects of VR12684 on anti‑proliferation, cell cycle arrest and apoptosis induction in CCA cells were demonstrated by SRB assay, flow cytometry, acridine orange/ethidium bromide (AO/EB) staining and western blot analysis. RESULTS: Treatment with VR12684 decreased cell proliferation in a dose- and time-dependent manner in the KKU-M156 cell line. VR12684 induced cell cycle arrest in the G2 phase in KKU-M156 through down-regulation of cyclin B1 and Cdk1 and up-regulation of p21, p27 and p53 levels. VR12684 induced mitochondria-mediated apoptosis by increasing DNA fragmentation, the Bax/BCL-2 ratio and AIF, and decreasing survivin with subsequent activation of caspase-9 and -3. This compound could induce apoptosis through the endoplasmic reticulum (ER) stress-mediated pathway by up-regulation of GRP78, IRE1α and GADD153 levels leading to down-regulation of Bcl-2 and activation of calpain-1, caspase-7 and -12. CONCLUSION: These results suggested that VR12684 inhibited KKU-M-156 cell growth by way of cell cycle arrest and induction of apoptosis, at least in part, through the mitochondria- and ER-associated intrinsic pathways. Such compounds warrant evaluation as a candidate for the treatment of human CCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。