Chemotherapy resistance is a major challenge to the effective treatment of cancer. Thus, a systematic pipeline for the efficient identification of effective combination treatments could bring huge biomedical benefit. In order to facilitate rational design of combination therapies, we developed a comprehensive computational model that incorporates the available biological knowledge and relevant experimental data on the life-and-death response of individual cancer cells to cisplatin or cisplatin combined with the TNF-related apoptosis-inducing ligand (TRAIL). The model's predictions, that a combination treatment of cisplatin and TRAIL would enhance cancer cell death and exhibit a "two-wave killing" temporal pattern, was validated by measuring the dynamics of p53 accumulation, cell fate, and cell death in single cells. The validated model was then subjected to a systematic analysis with an ensemble of diverse machine learning methods. Though each method is characterized by a different algorithm, they collectively identified several molecular players that can sensitize tumor cells to cisplatin-induced apoptosis (sensitizers). The identified sensitizers are consistent with previous experimental observations. Overall, we have illustrated that machine learning analysis of an experimentally validated mechanistic model can convert our available knowledge into the identity of biologically meaningful sensitizers. This knowledge can then be leveraged to design treatment strategies that could improve the efficacy of chemotherapy.
Designing combination therapies with modeling chaperoned machine learning.
利用建模辅助机器学习设计联合疗法
阅读:10
作者:Zhang Yin, Huynh Julie M, Liu Guan-Sheng, Ballweg Richard, Aryeh Kayenat S, Paek Andrew L, Zhang Tongli
| 期刊: | PLoS Computational Biology | 影响因子: | 3.600 |
| 时间: | 2019 | 起止号: | 2019 Sep 9; 15(9):e1007158 |
| doi: | 10.1371/journal.pcbi.1007158 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
