Extracellular matrix mechanics in lung parenchymal diseases.

肺实质疾病中的细胞外基质力学

阅读:4
作者:Suki Béla, Bates Jason H T
In this review, we examine how the extracellular matrix (ECM) of the lung contributes to the overall mechanical properties of the parenchyma, and how these properties change in disease. The connective tissues of the lung are composed of cells and ECM, which includes a variety of biological macromolecules and water. The macromolecules that are most important in determining the mechanical properties of the ECM are collagen, elastin, and proteoglycans. We first discuss the various components of the ECM and how their architectural organization gives rise to the mechanical properties of the parenchyma. Next, we examine how mechanical forces can affect the physiological functioning of the lung parenchyma. Collagen plays an especially important role in determining the homeostasis and cellular responses to injury because it is the most important load-bearing component of the parenchyma. We then demonstrate how the concept of percolation can be used to link microscopic pathologic alterations in the parenchyma to clinically measurable lung function during the progression of emphysema and fibrosis. Finally, we speculate about the possibility of using targeted tissue engineering to optimize treatment of these two major lung diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。