Activation of Caged Functional RNAs by An Oxidative Transformation.

通过氧化转化激活笼状功能性RNA

阅读:5
作者:Heili Joseph M, Adamala Katarzyna P, Engelhart Aaron E
RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment. 2-thiouridine lacksthe 2-position oxygen found in uridine, altering its hydrogen bonding pattern. This limits critical interactions (e. g., G-U wobble pairs) that allow for proper folding. Oxidative desulfurization of the incorporated 2-thiouridine moieties to uridine relieves this inability to fold properly, enabling recovery of function. This demonstration of expanded roles for RNA as environmentally responsive functional polymers challenges the notion that they are not known to be redox-sensitive. Harnessing redox switchability in RNA could regulate cellular activities such as translation, or allow switching RNA between a "template" and a "catalytic" state in "RNA World" scenarios or in synthetic biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。