Reservoir computing (RC) is a recent paradigm in the field of recurrent neural networks. Networks in RC have a sparsely and randomly connected fixed hidden layer, and only output connections are trained. RC networks have recently received increased attention as a mathematical model for generic neural microcircuits to investigate and explain computations in neocortical columns. Applied to specific tasks, their fixed random connectivity, however, leads to significant variation in performance. Few problem-specific optimization procedures are known, which would be important for engineering applications, but also in order to understand how networks in biology are shaped to be optimally adapted to requirements of their environment. We study a general network initialization method using permutation matrices and derive a new unsupervised learning rule based on intrinsic plasticity (IP). The IP-based learning uses only local learning, and its aim is to improve network performance in a self-organized way. Using three different benchmarks, we show that networks with permutation matrices for the reservoir connectivity have much more persistent memory than the other methods but are also able to perform highly nonlinear mappings. We also show that IP-based on sigmoid transfer functions is limited concerning the output distributions that can be achieved.
Initialization and self-organized optimization of recurrent neural network connectivity.
循环神经网络连接的初始化和自组织优化
阅读:4
作者:Boedecker Joschka, Obst Oliver, Mayer N Michael, Asada Minoru
| 期刊: | Hfsp Journal | 影响因子: | 0.000 |
| 时间: | 2009 | 起止号: | 2009 Oct;3(5):340-9 |
| doi: | 10.2976/1.3240502 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
