Predicting Protein-Protein Interactions Using Symmetric Logistic Matrix Factorization.

利用对称逻辑矩阵分解预测蛋白质-蛋白质相互作用

阅读:7
作者:Pei Fen, Shi Qingya, Zhang Haotian, Bahar Ivet
Accurate assessment of protein-protein interactions (PPIs) is critical to deciphering disease mechanisms and developing novel drugs, and with rapidly growing PPI data, the need for more efficient predictive methods is emerging. We propose here a symmetric logistic matrix factorization (symLMF)-based approach to predict PPIs, especially useful for large PPI networks. Benchmarked against two widely used datasets (Saccharomyces cerevisiae and Homo sapiens benchmarks) and their extended versions, the symLMF-based method proves to outperform most of the state-of-the-art data-driven methods applied to human PPIs, and it shows a performance comparable to those of deep learning methods despite its conceptual and technical simplicity and efficiency. Tests performed on humans, yeast, and tissue (brain and liver)- and disease (neurodegenerative and metabolic disorders)-specific datasets further demonstrate the high capability to capture the hidden interactions. Notably, many "de novo predictions" made by symLMF are verified to exist in PPI databases other than those used for training/testing the method, indicating that the method could be of broad utility as a simple, yet efficient and accurate, tool applicable to PPI datasets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。