Evaluating the role of connexin43 in congenital heart disease: Screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models.

评估连接蛋白43在先天性心脏病中的作用:对流出道异常患者进行突变筛查,并分析敲入小鼠模型

阅读:4
作者:Huang Guo-Ying, Xie Li-Jian, Linask Kaari L, Zhang Chen, Zhao Xiao-Qing, Yang Yi, Zhou Guo-Min, Wu Ying-Jie, Marquez-Rosado Lucrecia, McElhinney Doff B, Goldmuntz Elizabeth, Liu Chengyu, Lampe Paul D, Chatterjee Bishwanath, Lo Cecilia W
BACKGROUND: GJA1 gene encodes a gap junction protein known as connexin 43 (Cx43). Cx43 is abundantly expressed in the ventricular myocardium and in cardiac neural crest cells. Cx43 is proposed to play an important role in human congenital heart disease, as GJA1 knock-out mice die neonatally from outflow tract obstruction. In addition, patients with visceroatrial heterotaxia or hypoplastic left heart syndrome were reported to have point mutations in GJA1 at residues that affect protein kinase phosphorylation and gating of the gap junction channel. However, as these clinical findings were not replicated in subsequent studies, the question remains about the contribution of GJA1 mutations in human congenital heart disease (CHD). MATERIALS AND METHODS: We analyzed the GJA1 coding sequence in 300 patients with CHD from two clinical centers, focusing on outflow tract anomalies. This included 152 with Tetralogy of Fallot from over 200 patients exhibiting outflow tract anomalies, as well as other structural heart defects including atrioventricular septal defects and other valvar anomalies. Our sequencing analysis revealed only two silent nucleotide substitutions in 8 patients. To further assess the possible role of Cx43 in CHD, we also generated two knock-in mouse models with point mutations at serine residues subject to protein kinase C or casein kinase phosphorylation, sites that are known to regulate gating and trafficking of Cx43, respectively. RESULTS: Both heterozygous and homozygous knock-in mice were long term viable and did not exhibit overt CHD. CONCLUSION: The combined clinical and knock-in mouse mutant studies indicate GJA1 mutation is not likely a major contributor to CHD, especially those involving outflow tract anomalies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。