Cryptococcus gattii is a primary pathogenic yeast, increasingly important in public health, but factors responsible for its host predilection and geographical distribution remain largely unknown. We have characterized C. gattii STE12alpha to probe its role in biology and pathogenesis because this transcription factor has been linked to virulence in many human and plant pathogenic fungi. A full-length STE12alpha gene was cloned by colony hybridization and sequenced using primer walk and 3' rapid amplification of cDNA ends strategies, and a ste12alpha delta gene knockout mutant was created by URA5 insertion at the homologous site. A semiquantitative analysis revealed delayed and poor mating in ste12alpha delta mutant; this defect was not reversed by exogenous cyclic AMP. C. gattii parent and mutant strains showed robust haploid fruiting. Among putative virulence factors tested, the laccase transcript and enzymatic activity were down regulated in the ste12alpha delta mutant, with diminished production of melanin. However, capsule, superoxide dismutase, phospholipase, and urease were unaffected. Similarly, Ste12 deficiency did not cause any auxotrophy, assimilation defects, or sensitivity to a large panel of chemicals and antifungals. The ste12alpha delta mutant was markedly attenuated in virulence in both BALB/c and A/Jcr mice models of meningoencephalitis, and it also exhibited significant in vivo growth reduction and was highly susceptible to in vitro killing by human neutrophils (polymorphonuclear leukocytes). In tests designed to simulate the C. gattii natural habitat, the ste12alpha delta mutant was poorly pigmented on wood agar prepared from two tree species and showed poor survival and multiplication in wood blocks. Thus, STE12alpha plays distinct roles in C. gattii morphogenesis, virulence, and ecological fitness.
Transcription factor STE12alpha has distinct roles in morphogenesis, virulence, and ecological fitness of the primary pathogenic yeast Cryptococcus gattii.
转录因子 STE12alpha 在主要致病酵母新型隐球菌的形态发生、毒力和生态适应性方面发挥着独特的作用
阅读:9
作者:Ren Ping, Springer Deborah J, Behr Melissa J, Samsonoff William A, Chaturvedi Sudha, Chaturvedi Vishnu
| 期刊: | Eukaryotic Cell | 影响因子: | 0.000 |
| 时间: | 2006 | 起止号: | 2006 Jul;5(7):1065-80 |
| doi: | 10.1128/EC.00009-06 | 种属: | Yeast |
| 研究方向: | 微生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
