Designed iron carbonyls as carbon monoxide (CO) releasing molecules: rapid CO release and delivery to myoglobin in aqueous buffer, and vasorelaxation of mouse aorta.

设计铁羰基化合物作为一氧化碳(CO)释放分子:在水性缓冲液中快速释放CO并将其输送到肌红蛋白,以及舒张小鼠主动脉

阅读:7
作者:Gonzalez Margarita A, Fry Nicole L, Burt Richard, Davda Riddhi, Hobbs Adrian, Mascharak Pradip K
The physiological roles of CO in neurotransmission, vasorelaxation, and cytoprotective activities have raised interest in the design and syntheses of CO-releasing materials (CORMs) that could be employed to modulate such biological pathways. Three iron-based CORMs, namely, [(PaPy(3))Fe(CO)](ClO(4)) (1), [(SBPy(3))Fe(CO)](BF(4))(2) (2), and [(Tpmen)Fe(CO)](ClO(4))(2) (3), derived from designed polypyridyl ligands have been synthesized and characterized by spectroscopy and X-ray crystallography. In these three Fe(II) carbonyls, the CO is trans to a carboxamido-N (in 1), an imine-N (in 2), and a tertiary amine-N (in 3), respectively. This structural feature has been correlated to the strength of the Fe-CO bond. The CO-releasing properties of all three carbonyls have been studied in various solvents under different experimental conditions. Rapid release of CO is observed with 2 and 3 upon dissolution in both aqueous and nonaqueous media in the presence and absence of dioxygen. With 1, CO release is observed only under aerobic conditions, and the final product is an oxo-bridged diiron species while with 2 and 3, the solvent bound [(L)Fe(CO)](2+) (where L = SBPy(3) or Tpmen) results upon loss of CO under both aerobic and anaerobic conditions. The apparent rates of CO loss by these CORMs are comparable to other CORMs such as [Ru(glycine)(CO)(3)Cl] reported recently. Facile delivery of CO to reduced myoglobin has been observed with both 2 and 3. In tissue bath experiments, 2 and 3 exhibit rapid vasorelaxation of mouse aorta muscle rings. Although the relaxation effect is not inhibited by the soluble guanylate cyclase inhibitor ODQ, significant inhibition is observed with the BK(Ca) channel blocker iberiotoxin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。