In native extracellular matrices (ECM), cells utilize matrix metalloproteinases (MMPs) to degrade and remodel their microenvironment. Accordingly, synthetic matrices have been engineered to permit MMP-mediated cleavage, facilitating cell spreading, migration, and interactions. However, the interplay between matrix degradability and mechanical properties remains underexplored. We hypothesized that MMP activity induces immediate mechanical alterations in the ECM, which are subsequently detected by cells. We observed that both fibrillar collagen and synthetic degradable matrices exhibit enhanced stress relaxation following MMP exposure. Cells responded to these variations in relaxation by modulating their spreading and focal adhesions. Furthermore, we demonstrated that stress relaxation and cell spreading can be precisely controlled through the rational design of matrix degradability. These findings establish a fundamental link between matrix degradability and stress relaxation, with potential implications for a broad spectrum of biological applications.
Matrix degradation enhances stress relaxation, regulating cell adhesion and spreading.
基质降解增强应力松弛,调节细胞粘附和铺展
阅读:11
作者:Narasimhan Badri Narayanan, Fraley Stephanie I
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;122(13):e2416771122 |
| doi: | 10.1073/pnas.2416771122 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
