BACKGROUND: Bacillus subtilis is widely used for industrial enzyme production due to its capacity to efficiently secrete proteins. However, secretion efficiency of enzymes varies widely, and optimizing secretion is crucial to make production commercially viable. Previously, we have shown that overexpression of the xylanase XynA lowers expression of Clp protein chaperones, and that inactivation of CtsR, which regulates and represses clp transcription, increases the production of XynA. In the current study, we examined whether the same is the case for overexpression of the α-amylase AmyM from Geobacillus stearothermophilus by B. subtilis, and why XynA shows a different timing of secretion compared to AmyM. RESULTS: Transcriptome analyses revealed that B. subtilis cells overexpressing AmyM exhibited a distinct profile compared to XynA overexpressing cells, however there were also similarities and in both cases expression of CtsR controlled genes was downregulated. In contrast to XynA, inactivation of CtsR did not improve AmyM production. Upregulation of other protein chaperones, including GroEL/ES and DnaJ/K, by inactivating their transcriptional repressor HrcA, had almost no effect on XynA yields and in fact considerably lowered that of AmyM. Despite using the same promoter, the production of XynA peaks well before AmyM reaches its optimal secretion rate. Transcriptome and ribosome profiling indicated that this is neither related to transcription nor to translation regulation. We show that the reduced secretion in the stationary phase is partially due to the activity of secreted proteases, but also due to the activity of the intracellular protease LonA. The absence of this protein resulted in a 140% and 20% increased production for XynA and AmyM, respectively. CONCLUSION: The combination of transcriptome and ribosome profiling offered important information to determine at which cellular level production bottlenecks occurred. This helped us to identify LonA protease as an important factor influencing enzyme production yields in B. subtilis.
Inactivation of the conserved protease LonA increases production of xylanase and amylase in Bacillus subtilis.
保守蛋白酶 LonA 的失活会增加枯草芽孢杆菌中木聚糖酶和淀粉酶的产生
阅读:4
作者:Wang Biwen, Kes Mariah B M J, van Saparoea Anna C H van den Berg, Dugar Gaurav, Luirink Joen, Hamoen Leendert W
| 期刊: | Microbial Cell Factories | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 19; 23(1):335 |
| doi: | 10.1186/s12934-024-02616-6 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
