BACKGROUND: Most PCR-based diagnostics are still considered time- and labor-intensive due to disparate purification, amplification, and detection steps. Advancements in PCR enzymes and buffer chemistry have increased inhibitor tolerance, facilitating PCR directly from crude samples. Obviating the need for DNA purification, while lacking a concentration step, these direct sample methods are particularly apt for human genetic testing. However, direct PCR protocols have traditionally employed thermal cyclers with slow ramp rates and conservative hold times that significantly increase an assay's time-to-result. For this proof-of-principle study, our objective was to significantly reduce sample preparation and assay time for a PCR-based genetic test, for myotonic dystrophy type 1 (DM1), by pairing an inhibitor-resistant enzyme mix with a rapid thermal cycler to analyze samples directly in whole blood. METHODS: DM1 genetic screening was done with an adapted conventional PCR approach that employed the Streck Philisa® Thermal Cycler, the inhibitor-resistant NEBNext® High-Fidelity 2X PCR Master Mix, and agarose gel electrophoresis or an Agilent 2100 Bioanalyzer for detection. The Gene Link⢠Myotonic Dystrophy Genemer⢠Kit was used as a reference assay kit to evaluate the rapid assay. RESULTS: In this work, a rapid and direct PCR assay testing 10% whole blood as template has been developed as an exclusionary screening assay for DM1, a triple-repeat genetic disorder. PCR amplification was completed in 15 minutes using 30 cycles, including in situ hot-start/cell lysis. Out of the 40 donors screened, this assay identified 23 (57.5%) as DM1 negative suggesting no need for further testing. These data are 100% concordant with data collected using the commercially available Gene Link Genemer⢠Kit per the kit-specific PCR protocol. CONCLUSIONS: The PCR assay described in this study amplified DM1 short tandem repeats in 15 minutes. By eliminating sample purification and slower conventional PCR protocols, we demonstrated how adaptation of current PCR technology and chemistries can produce a simple-to-use exclusionary screening assay that is independent of up-front sample prep, improving a clinical lab technician's time-to-result. We envision this direct and rapid methodology could be applied to other conventional PCR-based genetic tests and sample matrices where genomic DNA is targeted for analysis within a given molecular diagnostic platform.
PCR amplification of a triple-repeat genetic target directly from whole blood in 15 minutes as a proof-of-principle PCR study for direct sample analysis for a clinically relevant target.
在 15 分钟内直接从全血中扩增三重复基因靶标,作为直接样本分析临床相关靶标的原理验证 PCR 研究
阅读:3
作者:Connelly Christopher M, Porter Laura R, TerMaat Joel R
| 期刊: | BMC Medical Genetics | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014 Dec 12; 15:130 |
| doi: | 10.1186/s12881-014-0130-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
