Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation.

通过引入 ZnO/AgNPs 和 AgNPs 来调节 MWCNT 中的电荷转移:碳与 ZnO/Ag 异质结构结合在活性物质形成中的作用

阅读:7
作者:Gamiño-Barocio Ismael, Vázquez-Vázquez Eric Fernando, Hernández-Rodríguez Yazmín Mariela, Cigarroa-Mayorga Oscar Eduardo
In this research, multi-walled carbon nanotubes (MWCNTs) were decorated with two kinds of nanostructures, (1) silver nanoparticles (AgNPs) and (2) zinc oxide-silver nano-heterostructures (ZnO/Ag-NHs), via an accessible chemical coprecipitation method assisted with ultrasonic radiation. The high-resolution transmission electron microscopy analysis demonstrated the successful decoration of MWCNTs with the nanostructures with a diameter size of 11 nm ± 2 nm and 46 nm ± 5 nm for the AgNPs and the ZnO/Ag-NHs, respectively. The reactive species were promoted in an aqueous medium assisted with UV irradiation on the functionalized MWCNT. UV-Vis spectroscopy demonstrated that production of the reactive species density increased 4.07 times, promoted by the single MWCNT after the functionalization. X-ray photoelectron spectroscopy showed that Sp(2) hybridization in carbon atoms of MWCNTs participates in the binding of AgNPs and ZnO/Ag-NH decoration and thus participates in the formation of reactive species in an aqueous medium, as is the case for cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。