Mutator phenotypes are short-lived due to the rapid accumulation of deleterious mutations. Yet, recent observations reveal that certain fungi can undergo prolonged accelerated evolution after losing DNA repair genes. Here, we surveyed 1,154 yeast genomes representing nearly all known yeast species of the subphylum Saccharomycotina to examine the relationship between reduced DNA repair repertoires and elevated evolutionary rates. We identified three distantly related lineages-encompassing 12% of species-with substantially reduced sets of DNA repair genes and the highest evolutionary rates in the entire subphylum. Two of these "faster-evolving lineages" (FELs)-a subclade within the order Pichiales and the Wickerhamiella/Starmerella (W/S) clade (order Dipodascales)-are described here for the first time, while the third corresponds to a previously documented Hanseniaspora FEL. Examination of DNA repair gene repertoires revealed a set of genes predominantly absent in these three FELs, suggesting a potential role in the observed acceleration of evolutionary rates. Genomic signatures in the W/S clade are consistent with a substantial mutational burden, including pronounced A|T bias and signatures of endogenous DNA damage. The W/S clade appears to mitigate UV-induced damage through horizontal acquisition of a bacterial photolyase gene, underscoring how gene loss may be offset by nonvertical evolution. These findings highlight how the loss of DNA repair genes gave rise to hypermutators that persist across macroevolutionary timescales, with horizontal gene transfer as an avenue for partial functional compensation.
Stable hypermutators revealed by the genomic landscape of DNA repair genes among yeast species.
通过对酵母物种中DNA修复基因基因组图谱的研究,揭示了稳定的超突变体
阅读:4
作者:Gonçalves Carla, Steenwyk Jacob L, Rinker David C, Opulente Dana A, LaBella Abigail L, Harrison Marie-Claire, Wolters John F, Zhou Xiaofan, Shen Xing-Xing, Covo Shay, Groenewald Marizeth, Hittinger Chris Todd, Rokas Antonis
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 17 |
| doi: | 10.1101/2025.03.15.643480 | 种属: | Yeast |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
