PPAR-α improves the recovery of lung function following acute respiratory distress syndrome by suppressing the level of TGF-β1

PPAR-α通过抑制TGF-β1水平促进急性呼吸窘迫综合征后肺功能的恢复

阅读:5
作者:Yang Liu, Liping Xie, Mingquan Yang, Xiaofei Tan, Yonghong Zeng, Gang Zheng, Youying Chen, Ping Chen

Abstract

Although peroxisome proliferator-activated receptor (PPAR)-α has been reported to be involved in preventing acute lung injury (ALI), the molecular regulation of post‑ALI lung recovery remains to be fully elucidated. The aim of the present study was to characterize the mechanism by which PPAR‑α prevents ALI and examine the role of PPAR‑α in the recovery of lung function following acute respiratory distress syndrome (ARDS). Reverse transcription‑quantitative‑polymerase chain reaction and western blot analyses suggested that PPAR‑α was effective in suppressing transforming growth factor (TGF)‑β1 in HLF cells and RAW 264.7 cells. In an ALI mouse model, PPAR‑α treatment prior to stimulation with lipopolysaccharide (LPS) resulted in a decrease in the expression of TGF‑β1 in bronchoalveolar lavage fluid (BALF), peripheral blood and splenocytes. The injection of a virus expressing short hairpin PPAR‑α into mice following LPS treatment resulted in a dose‑dependent increase in lung resistance index and decrease in dynamic compliance, and a significant increase in BALF protein, which indicated PPAR‑α was essential for the recovery of lung function following ALI. Of note, the serum expression of PPAR‑α was inversely correlated with TGF‑β1 and negatively correlated with disease severity in patients with ARDS. These data suggested that PPAR‑α was essential for the recovery of lung function following ALI by the suppression of TGF‑β1, which reveals a previously unappreciated mechanism controlling post‑ALI lung recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。