To investigate the static performance of precast segmental hollow piers, two precast segmental hollow pier specimens were designed for static loading tests on the top of piers. The finite element model of precast segmental hollow piers was established by the finite element software Abaqus and verified based on the test results. Based on the experimental and finite element models, three optimal design solutions were proposed, and the calculation results of each solution were analyzed. The results show that precast segmental hollow pier mechanical behavior is similar to that of cantilevered bending members. The specimens present brittle damage characteristics after the destruction of the structure at the bottom of the pier pressure edge as the axis of the rigid body rotation. Following the test loading process, the bonding between the segments is good, except for the pier bottom damage surface of the rest of the bonding surface, which has no relative displacement. The calculation results of the finite element model are in good agreement with the test results and can effectively predict the load-displacement response of precast piers. Three optimized design solutions are proposed. The finite element simulation proves all three optimized design solutions show better overall ductility than the original solution and can effectively improve the performance of segmental precast hollow piers.
Experimental and Numerical Study of Static Behavior of Precast Segmental Hollow Bridge Piers.
预制节段空心桥墩静态行为的试验和数值研究
阅读:7
作者:Lu Wenliang, Peng Wen-Qiang, Zhu Li, Gao Cong, Tang Ya-Dong, Zhou Yue-Wu, Su Wei, Zeng Bing
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 Oct 9; 15(19):6991 |
| doi: | 10.3390/ma15196991 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
