Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells

使用源自高密度骨髓间充质干细胞的三维无支架自体结构同时再生体内全层软骨和软骨下骨缺损

阅读:5
作者:Kohei Ishihara, Koichi Nakayama, Shizuka Akieda, Shuichi Matsuda, Yukihide Iwamoto

Background

In recent years, several

Conclusions

Using our novel technique, which employs a three-dimensional scaffold-free autologous construct derived from BM-MSCs, we successfully achieved simultaneous regeneration of bone and cartilage for up to 1 year in vivo. This method has potential for clinical use as a safe and effective method for repairing bone and cartilage defects.

Methods

BM-MSCs were isolated from bone marrow liquid aspirated from the iliac crest of rabbits. After expansion in culture dishes and re-suspension in 96-well plates, the cells spontaneously aggregated into a spheroid-like structure. The spheroids were loaded into a tube-shaped Teflon mold with a 5-mm height and maintained under air-liquid interface conditions. These loaded spheroids fused with each other, resulting in a cylinder-shaped construct made of fused cells that conformed to the inner shape of the mold. The construct was implanted into an osteochondral defect in rabbit knees and histologically analyzed 24 and 52 weeks after implantation using Wakitani's scoring system.

Results

Both bone and cartilage were regenerated, maintaining a constant thickness of cartilage. The mean histological score was 10 ± 1.7 in the 24-week group and 9.7 ± 0.6 in the 52-week group. There was no significant difference between the 24- and 52-week groups in either parameter of the score, indicating that no deterioration of the repaired tissue occurred during the intervening period. Conclusions: Using our novel technique, which employs a three-dimensional scaffold-free autologous construct derived from BM-MSCs, we successfully achieved simultaneous regeneration of bone and cartilage for up to 1 year in vivo. This method has potential for clinical use as a safe and effective method for repairing bone and cartilage defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。