Hand-foot-and-month disease (HFMD), especially the enterovirus A71 (EV-A71) subtype, is a major health problem in Beijing, China. Previous studies mainly used regressive models to forecast the prevalence of HFMD, ignoring its intrinsic age groups. This study aims to predict HFMD of EV-A71 subtype in three age groups (0-3, 3-6 andâ>â6Â years old) from 2011 to 2018 using residual-convolutional-recurrent neural network (CNNRNN-Res), convolutional-recurrent neural network (CNNRNN) and recurrent neural network (RNN). They were compared with auto-regressio, global auto-regression and vector auto-regression on both short-term and long-term prediction. Results showed that CNNRNN-Res and RNN had higher accuracies on point forecast tasks, as well as robust performances in long-term prediction. Three deep learning models also had better skills in peak intensity forecast, and CNNRNN-Res achieved the best results in the peak month forecast. We also found that three age groups had consistent outbreak trends and similar patterns of prediction errors. These results highlight the superior performance of deep learning models in HFMD prediction and can assist the decision-makers to refine the HFMD control measures according to age groups.
Using deep learning to predict the hand-foot-and-mouth disease of enterovirus A71 subtype in Beijing from 2011 to 2018.
利用深度学习预测2011年至2018年北京地区肠道病毒A71亚型手足口病
阅读:3
作者:Wang Yuejiao, Cao Zhidong, Zeng Daniel, Wang Xiaoli, Wang Quanyi
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2020 | 起止号: | 2020 Jul 22; 10(1):12201 |
| doi: | 10.1038/s41598-020-68840-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
