The Smad3-dependent microRNA let-7i-5p promoted renal fibrosis in mice with unilateral ureteral obstruction

Smad3 依赖的 microRNA let-7i-5p 促进单侧输尿管梗阻小鼠肾脏纤维化

阅读:5
作者:Ze Peng, Huai-Ying Guo, Yu-Qing Li, Jian-Chun Li, Xiao-Hong Yang, Jian Liu, Qiong-Dan Hu, Hong-Lian Wang, Li Wang

Abstract

Renal fibrosis is a common feature of all types of chronic kidney disease (CKD) and is tightly regulated by the TGF-β/Smad3 pathway. Let-7i-5p belongs to the let-7 microRNA family with diverse biological functions. It has been reported that let-7i-5p suppresses fibrotic disease in the heart, lungs, and blood vessels, while the role of let-7i-5p in renal fibrosis remains limited. In this study, we aimed to investigate the role of let-7i-5p in renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) and TGF-β1-stimulated renal tubular cell line TCMK1. The RNA-targeting CRISPR/Cas13d system was used to knock down let-7i-5p. Renal injury and fibrosis were determined by histological analysis, RT-PCR, Western blot, and immunostaining. Our results have shown that in the kidneys after UUO, the expression of let-7i-5p was significantly increased along with notable tubular injury and interstitial fibrosis. Electroporation of let-7i-targeting Cas13d plasmid efficiently knocked down let-7i-5p in kidneys after UUO with reduced tubular injury, fibrotic area, and expression of fibrotic marker genes α-SMA, fibronectin, and Col1a1. In TGF-β1-stimulated TCMK1 cells, knockdown of let-7i-5p by Cas13d plasmid transfection also blunted the expression of fibrotic marker genes. Most importantly, the genomic locus of let-7i showed enriched binding of Smad3 as revealed by chromatin immunoprecipitation. In TCMK1 cells, the overexpression of Smad3 can directly induce the expression of let-7i-5p. However, the deletion of Smad3 abolished TGF-β1-stimulated let-7i-5p expression. Collectively, these findings suggest that let-7i-5p is a Smad3-dependent microRNA that plays a pathogenic role in renal fibrosis. Let-7i-5p could be a promising target for the treatment of CKD-associated renal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。