Finding the optimal balance between end-user's comfort, lifestyle preferences and the cost of the heating, ventilation and air conditioning (HVAC) system, which requires intelligent decision making and control. This paper proposes a heating control method for HVAC based on dynamic programming. The method first selects the most suitable modeling approach for the controlled building among three machine learning modeling techniques by means of statistical performance metrics, after which the control of the HVAC system is described as a constrained optimization problem, and the action of the controller is given by solving the optimization problem through dynamic programming. In this paper, the variable 'thermal energy storage in building' is introduced to solve the problem that dynamic programming is difficult to obtain the historical state of the building due to the requirement of no aftereffect, while the room temperature and the remaining start hours of the Primary Air Unit are selected to describe the system state through theoretical analysis and trial and error. The results of the TRNSYS/Python co-simulation show that the proposed method can maintain better indoor thermal environment with less energy consumption compared to carefully reviewed expert rules. Compared with expert rule set 'baseline-20 °C', which keeps the room temperature at the minimum comfort level, the proposed control algorithm can save energy and reduce emissions by 35.1% with acceptable comfort violation.
Heating Control Strategy Based on Dynamic Programming for Building Energy Saving and Emission Reduction.
基于动态规划的建筑节能减排供暖控制策略
阅读:7
作者:Qin Haosen, Yu Zhen, Li Tailu, Liu Xueliang, Li Li
| 期刊: | International Journal of Environmental Research and Public Health | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Oct 29; 19(21):14137 |
| doi: | 10.3390/ijerph192114137 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
