A memetic dynamic coral reef optimisation algorithm for simultaneous training, design, and optimisation of artificial neural networks.

一种用于同时训练、设计和优化人工神经网络的模因动态珊瑚礁优化算法

阅读:7
作者:Bérchez-Moreno Francisco, Durán-Rosal Antonio M, Hervás Martínez César, Gutiérrez Pedro A, Fernández Juan C
Artificial Neural Networks (ANNs) have been used in a multitude of real-world applications given their predictive capabilities, and algorithms based on gradient descent, such as Backpropagation (BP) and variants, are usually considered for their optimisation. However, these algorithms have been shown to get stuck at local optima, and they require a cautious design of the architecture of the model. This paper proposes a novel memetic training method for simultaneously learning the ANNs structure and weights based on the Coral Reef Optimisation algorithms (CROs), a global-search metaheuristic based on corals' biology and coral reef formation. Three versions based on the original CRO combined with a Local Search procedure are developed: (1) the basic one, called Memetic CRO; (2) a statistically guided version called Memetic SCRO (M-SCRO) that adjusts the algorithm parameters based on the population fitness; (3) and, finally, an improved Dynamic Statistically-driven version called Memetic Dynamic SCRO (M-DSCRO). M-DSCRO is designed with the idea of improving the M-SCRO version in the evolutionary process, evaluating whether the fitness distribution of the population of ANNs is normal to automatically decide the statistic to be used for assigning the algorithm parameters. Furthermore, all algorithms are adapted to the design of ANNs by means of the most suitable operators. The performance of the different algorithms is evaluated with 40 classification datasets, showing that the proposed M-DSCRO algorithm outperforms the other two versions on most of the datasets. In the final analysis, M-DSCRO is compared against four state-of-the-art methods, demonstrating its superior efficacy in terms of overall accuracy and minority class performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。