Accumulated evidence has shown that commensal microorganisms play key roles in human physiology and diseases. Dysbiosis of the human-associated microbial communities, often referred to as the human microbiome, has been associated with many diseases. Applying supervised classification analysis to the human microbiome data can help us identify subsets of microorganisms that are highly discriminative and hence build prediction models that can accurately classify unlabeled samples. Here, we systematically compare two state-of-the-art ensemble classifiers: Random Forests (RF), eXtreme Gradient Boosting decision trees (XGBoost) and two traditional methods: The elastic net (ENET) and Support Vector Machine (SVM) in the classification analysis of 29 benchmark human microbiome datasets. We find that XGBoost outperforms all other methods only in a few benchmark datasets. Overall, the XGBoost, RF and ENET display comparable performance in the remaining benchmark datasets. The training time of XGBoost is much longer than others, partially due to the much larger number of hyperparameters in XGBoost. We also find that the most important features selected by the four classifiers partially overlap. Yet, the difference between their classification performance is almost independent of this overlap.
Comparative study of classifiers for human microbiome data.
人类微生物组数据分类器的比较研究
阅读:6
作者:Wang Xu-Wen, Liu Yang-Yu
| 期刊: | Medicine in Microecology | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Jun |
| doi: | 10.1016/j.medmic.2020.100013 | 种属: | Human |
| 研究方向: | 微生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
