BACKGROUND: Norvancomycin has been widely used in clinic to treat against MRSA (Methicillin-resistant Staphylococcus aureus) and MRSE (Methicillin-resistant Staphylococcus epidermidis) infections in China. Amycolatopsis orientalis NCPC 2-48, a high yield strain derived from A. orientalis CPCC 200066, has been applied in industrial large-scale production of norvancomycin by North China Pharmaceutical Group. However, the potential high-yield and regulatory mechanism involved in norvancomycin biosynthetic pathway has not yet been addressed. RESULTS: Here we sequenced and compared the genomes and transcriptomes of A. orientalis CPCC 200066 and NCPC 2-48. These two genomes are extremely similar with an identity of more than 99.9%, and no duplication and structural variation was found in the norvancomycin biosynthetic gene cluster. Comparative transcriptomic analysis indicated that biosynthetic genes of norvancomycin, as well as some primary metabolite pathways for the biosynthetic precursors of norvancomycin were generally upregulated. AoStrR1 and AoLuxR1, two cluster-situated regulatory genes in norvancomycin cluster, were 23.3-fold and 5.8-fold upregulated in the high yield strain at 48Â h, respectively. Over-expression of AoStrR1 and AoLuxR1 in CPCC 200066 resulted in an increase of norvancomycin production, indicating their positive roles in norvancomycin biosynthesis. Furthermore, AoStrR1 can regulate the production of norvancomycin by directly interacting with at least 8 promoters of norvancomycin biosynthetic genes or operons. CONCLUSION: Our results suggested that the high yield of NCPC 2-48 can be ascribed to increased expression level of norvancomycin biosynthetic genes in its cluster as well as the genes responsible for the supply of its precursors. The norvancomycin biosynthetic genes are presumably regulated by AoStrR1 and AoLuxR1, of them AoStrR1 is possibly the ultimate pathway-specific regulator for the norvancomycin production. These results are helpful for further clarification of the holistic and pathway-specific regulatory mechanism of norvancomycin biosynthesis in the industrial production strain.
Comparative genomics and transcriptomics analyses provide insights into the high yield and regulatory mechanism of Norvancomycin biosynthesis in Amycolatopsis orientalis NCPC 2-48.
比较基因组学和转录组学分析揭示了东方阿米科拉菌 NCPC 2-48 中诺万古霉素生物合成的高产量和调控机制
阅读:4
作者:Li Xingxing, Zhang Cong, Zhao Ying, Lei Xuan, Jiang Zhibo, Zhang Xuexia, Zheng Zhihui, Si Shuyi, Wang Lifei, Hong Bin
| 期刊: | Microbial Cell Factories | 影响因子: | 4.900 |
| 时间: | 2021 | 起止号: | 2021 Feb 2; 20(1):28 |
| doi: | 10.1186/s12934-021-01521-6 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
