The Data set for Patient Information Based Algorithm to Predict Mortality Cause by COVID-19.

基于患者信息算法预测 COVID-19 死亡原因的数据集

阅读:5
作者:Li Jing, Wang Lishi, Guo Sumin, Xie Ning, Yao Lan, Cao Yanhong, Day Sara W, Howard Scott C, Graff J Carolyn, Gu Tianshu, Ji Jiafu, Gu Weikuan, Sun Dianjun
The data of COVID-19 disease in China and then in South Korea were collected daily from several different official websites. The collected data included 33 death cases in Wuhan city of Hubei province during early outbreak as well as confirmed cases and death toll in some specific regions, which were chosen as representatives from the perspective of the coronavirus outbreak in China. Data were copied and pasted onto Excel spreadsheets to perform data analysis. A new methodology, Patient Information Based Algorithm (PIBA) [1], has been adapted to process the data and used to estimate the death rate of COVID-19 in real-time. Assumption is that the number of days from inpatients to death fall into a pattern of normal distribution and the scores in normal distribution can be obtained by observing 33 death cases and analysing the data [2]. We selected 5 scores in normal distribution of these durations as lagging days, which will be used in the following estimation of death rate. We calculated each death rate on accumulative confirmed cases with each lagging day from the current data and then weighted every death rate with its corresponding possibility to obtain the total death rate on each day. While the trendline of these death rate curves meet the curve of current ratio between accumulative death cases and confirmed cases at some points in the near future, we considered that these intersections are within the range of real death rates. Six tables were presented to illustrate the PIBA method using data from China and South Korea. One figure on estimated rate of infection and patients in serious condition and retrospective estimation of initially occurring time of CORID-19 based on PIBA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。