Evaluation of Silk Fibroin-RGD-Stem Cell Factor Scaffold Effect on Adhesion, Migration, and Proliferation of Stem Cells of Apical Papilla.

评价丝素蛋白-RGD-干细胞因子支架对牙乳头干细胞粘附、迁移和增殖的影响

阅读:5
作者:Wei Jie, Sun Xiao-Qiang, Hou Ben-Xiang
This study explored the effects of a silk fibroin-RGD-stem cell factor (SF-RGD-SCF) scaffold on the migration, proliferation, and attachment of stem cells of apical papilla (SCAPs). SF, SF-RGD, SF-SCF, and SF-RGD-SCF scaffolds were prepared, and laser confocal microscopy was used to observe the adhesion and growth status of SCAPs on the scaffolds. Furthermore, the numbers of SCAPs on the scaffolds were counted by a digestion counting method to evaluate their proliferation. Cells on the SF-RGD-SCF scaffold proliferated more than those on the other scaffolds and showed a more obvious tendency to migrate to the scaffold's deep porous structure after 7 d seeding. Live/dead cell staining results showed that almost all the adhered cells were alive after 7 d. Furthermore, cell counting showed that the number of cells on the SF-RGD-SCF scaffold was highest after both 1 and 7 d (P < 0.05). Thus, the SF-RGD-SCF composite is biocompatible and promotes the migration, adhesion, and proliferation of SCAPs, making it of potential use as a scaffold for cell-homing pulp regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。