OBJECTIVE: To fabricate an injectable composite bone substitute with hyaluronic acid (HA) and calcium sulfate and to evaluate the biocompatibility and effect of the composite on cell proliferation, osteogenic differentiation in vitro and osteogenic capability in vivo. METHODS: Calcium sulfate powder was mixed with HA solution, cross-linked HA solution, and phosphate buffer solution (PBS) in a ratio of 2â¶1 ( W/ V) to get composites of CA+HA, CA+HAC, and CA. The standard extracts from above 3 materials were prepared according to ISO10993-5, and were used to culture mouse MC3T3-E1 cells. The composite biocompatibility and cell proliferation in different concentrations of extract were tested with cell counting kit-8 (CCK-8). The cells were cultured with standard medium as a control. The optimal concentration was selected for osteogenic differentiation test, and ELISA Kit was used to determine the alkaline phosphatase (ALP), collagen type I (COL-I), and osteocalcin (OCN). The femoral condylar bone defect was made on New Zealand white rabbits and repaired with CA+HA, CA+HAC, and CA. Micro-CT was done to evaluate new bone formation with bone volume/tissue volume (BV/TV) ratio at 6 and 12 weeks. HE staining was used to observe bone formation. RESULTS: CA+HA and CA+HAC were better in injectability and stability in PBS than CA. The biocompatibility test showed that absorbance ( A) value of CA group was significantly lower than that of control group ( P<0.05) at 6, 12, and 24 hours after culture, but no significant difference was found in A values between CA+HA group or CA+HAC group and control group ( P>0.05). The proliferation test showed 25% and 50% extract of all 3 materials had significantly higher A value than control group ( P<0.05). For 75% and 100% extract, only CA+HA group had significantly higher A value than control group ( P<0.05). And 50% extract was selected for osteogenic differentiation test. At 14 and 21 days, ALP, COL-I and OCN concentrations of CA+HA group and CA+HAC group were significantly higher than those of CA group and control group ( P<0.05). Micro-CT results showed higher BV/TV in CA+HA group and CA+HAC group than CA group at 6 and 12 weeks ( P<0.05), but no significant difference was found between CA+HA group and CA+HAC group ( P>0.05). HE staining revealed that a little bone tissue was seen in CA+HA group and CA+HAC group, but there was no bone formation in CA group at 6 weeks; more streak bone tissue in CA+HA group and CA+HAC group than CA group at 12 weeks. CONCLUSION: Composites prepared with calcium sulfate and HA or with cross-linked HA are stable, injectable, and biocompatible. The materials have excellent effect on proliferation and differentiation of mouse MC3T3-E1 cells. They also show good osteogenic capability in vivo. So it is a potential bone substitutes for bone defective diseases.
[Effect of injectable composites of calcium sulfate and hyaluronate in enhancing osteogenesis].
[注射用硫酸钙和透明质酸复合材料对促进骨生成的作用]
阅读:4
作者:Huang Zhifeng, Li Bo, Li Qiang, Huang Zhenfei, Yin Bo, Ma Pei, Xu Derong, Wu Zhihong, Qiu Guixing
| 期刊: | Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery | 影响因子: | 0.000 |
| 时间: | 2017 | 起止号: | 2017 Jun 15; 31(6):730-737 |
| doi: | 10.7507/1002-1892.201612145 | 研究方向: | 骨科研究 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
