The influenza A virus (IAV) is a major cause of recurrent seasonal epidemics and global pandemics, posing a significant threat to public health. Although lycorine has demonstrated broad-spectrum antiviral activity, its specific mechanisms of action against IAV remain incompletely understood. In this study, we characterized the potent inhibitory effects of lycorine on seasonal and drug-resistant IAV subtypes (H1N1/H3N2) as well as the influenza B virus, showing its ability to suppress viral mRNA, viral titers, and M2 protein expression across multiple cell lines. Time-of-addition and time-course assays revealed that lycorine exerts multiphasic interference, and the critical late stage of the IAV life cycle aroused our interest to study this further. Mechanistically, we discovered that lycorine specifically interferes with the de novo synthesis of nucleoporin Nup93, thereby disrupting the nuclear export of viral nucleoprotein (NP). These findings not only establish lycorine as a promising broad-spectrum anti-influenza candidate but also provide new insights for developing host-targeted antiviral strategies.
Lycorine Inhibits Influenza Virus Replication by Affecting Nascent Nucleoporin Nup93 Synthesis.
石蒜碱通过影响新生核孔蛋白 Nup93 的合成来抑制流感病毒复制
阅读:9
作者:Yan Haiyan, Wang Huiqiang, Wang Kun, Wu Shuo, Jiang Jiandong, Li Yuhuan
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 3; 26(11):5358 |
| doi: | 10.3390/ijms26115358 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
