Training of the impaired forelimb after traumatic brain injury enhances hippocampal neurogenesis in the Emx1 null mice lacking a corpus callosum.

脑外伤后对受损前肢进行训练可增强缺乏胼胝体的 Emx1 基因敲除小鼠的海马神经发生

阅读:5
作者:Neumann Melanie, Liu Wei, Sun Chongran, Yang Shih Yen, Noble-Haeusslein Linda J, Liu Jialing
Unilateral brain injury is known to disrupt the balance between the two cortices, as evidenced by an abnormally high interhemispheric inhibitory drive from motor cortex M1(intact) to M1(lesioned) transmitted transcallosally. Our previous work has shown that the deletion of homeobox gene Emx1 not only led to the agenesis of the corpus callosum (cc), but also to reduced hippocampal neurogenesis. The current study sought to determine whether lacking the cc affected the recovery of forelimb function and hippocampal plasticity following training of the affected limb in mice with unilateral traumatic brain injuries (TBI). One week after TBI, produced by a controlled cortical impact to impair the preferred limb, Emx1 wild type (WT) and knock out (KO) mice were subjected to the single-pellet reaching task with the affected limb for 4 weeks. Both TBI and Emx1 deletion had overall adverse effects on the successful rate of reaching. However, TBI significantly affected reaching performance only in the WT mice and not in the KO mice. Both TBI and Emx1 gene deletion also negatively affected hippocampal neurogenesis, demonstrated by a reduction in doublecortin (DCX)-expressing immature neurons, while limb training enhanced DCX expression. However, limb training increased DCX cells in KO mice only in the TBI-treated group, whereas it induced neurogenesis in both WT mice groups regardless of the treatment. Our finding also suggests that limb training enhances neuroplasticity after brain injury at functionally remote regions including the hippocampus, which may have implications for promoting overall recovery of function after TBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。