Recognition of Peripheral Lung Cancer and Focal Pneumonia on Chest Computed Tomography Images Based on Convolutional Neural Network.

基于卷积神经网络的胸部计算机断层扫描图像中周围型肺癌和局灶性肺炎的识别

阅读:4
作者:Cheng Xiaoyue, Wen He, You Hao, Hua Li, Xiaohua Wu, Qiuting Cao, Jiabao Liu
Introduction: Chest computed tomography (CT) is important for the early screening of lung diseases and clinical diagnosis, particularly during the COVID-19 pandemic. We propose a method for classifying peripheral lung cancer and focal pneumonia on chest CT images and undertake 5 window settings to study the effect on the artificial intelligence processing results. Methods: A retrospective collection of CT images from 357 patients with peripheral lung cancer having solitary solid nodule or focal pneumonia with a solitary consolidation was applied. We segmented and aligned the lung parenchyma based on some morphological methods and cropped this region of the lung parenchyma with the minimum 3D bounding box. Using these 3D cropped volumes of all cases, we designed a 3D neural network to classify them into 2 categories. We also compared the classification results of the 3 physicians with different experience levels on the same dataset. Results: We conducted experiments using 5 window settings. After cropping and alignment based on an automatic preprocessing procedure, our neural network achieved an average classification accuracy of 91.596% under a 5-fold cross-validation in the full window, in which the area under the curve (AUC) was 0.946. The classification accuracy and AUC value were 90.48% and 0.957 for the junior physician, 94.96% and 0.989 for the intermediate physician, and 96.92% and 0.980 for the senior physician, respectively. After removing the error prediction, the accuracy improved significantly, reaching 98.79% in the self-defined window2. Conclusion: Using the proposed neural network, in separating peripheral lung cancer and focal pneumonia in chest CT data, we achieved an accuracy competitive to that of a junior physician. Through a data ablation study, the proposed 3D CNN can achieve a slightly higher accuracy compared with senior physicians in the same subset. The self-defined window2 was the best for data training and evaluation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。