In various scenarios where products and services are accompanied by warranties to ensure their reliability over a specified time, the two-parameter (shifted) exponential distribution serves as a fundamental model for time-to-event data. In modern production process, the products often come with warranties, and their quality can be manifested by the changes in the scale and origin parameters of a shifted exponential (SE) distribution. This paper introduces the Max-EWMA chart, employing maximum likelihood estimators and exponentially weighted moving average (EWMA) statistics, to jointly monitor SE distribution parameters. Additionally, we extend two additional charts, namely the Max-DEWMA and Max-TEWMA charts to enhance early-stage shift detection. Performance evaluations under zero-state and steady-state conditions compare these charts with the existing Max-CUSUM chart in terms of expected value and standard deviation of the run length (RL) distribution. Our findings reveal that among the Max-EWMA schemes, the Max-EWMA SE chart outperforms the others in terms of steady-state performance, while the Max-TEWMA chart surpasses the Max-EWMA and Max-DEWMA SE charts in respect to zero-state performance. Moreover, the proposed Max-EWMA schemes demonstrate advantages over Max-CUSUM, especially for small to moderate smoothing constants. We also provide an illustrative example to demonstrate the implementation of the proposed schemes.
A new EWMA chart for simultaneously monitoring the parameters of a shifted exponential distribution.
一种用于同时监测移位指数分布参数的新型 EWMA 图表
阅读:3
作者:Baranwal Amita, Kumar Nirpeksh, Chatterjee Kashinath, Koukouvinos Christos
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2024 Jul 2; 52(1):221-252 |
| doi: | 10.1080/02664763.2024.2363404 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
