Given the universality of autopolyploid species in nature, it is crucial to develop genomic selection methods that consider different allele dosages for autopolyploid breeding. However, no method has been developed to deal with autopolyploid data regardless of the ploidy level. In this study, we developed a modified genomic best linear unbiased prediction (GBLUP) model (polyGBLUP) through constructing additive and dominant genomic relationship matrices based on different allele dosages. polyGBLUP could carry out genomic prediction for autopolyploid species regardless of the ploidy level. Through comprehensive simulations and analysis of real data of autotetraploid blueberry and guinea grass and autohexaploid sweet potato, the results showed that polyGBLUP achieved higher prediction accuracy than GBLUP and its superiority was more obvious when the ploidy level of autopolyploids is high. Furthermore, when the dominant effect was added to polyGBLUP (polyGDBLUP), the greater the dominance degree, the more obvious the advantages of polyGDBLUP over the diploid models in terms of prediction accuracy, bias, mean squared error and mean absolute error. For real data, the superiority of polyGBLUP over GBLUP appeared in blueberry and sweet potato populations and a part of the traits in guinea grass population due to the high correlation coefficients between diploid and polyploidy genomic relationship matrices. In addition, polyGDBLUP did not produce higher prediction accuracy than polyGBLUP for most traits of real data as dominant genetic variance was not captured for these traits. Our study will be a significant promising method for genomic prediction of autopolyploid species.
polyGBLUP: a modified genomic best linear unbiased prediction improved the genomic prediction efficiency for autopolyploid species.
polyGBLUP:一种改进的基因组最佳线性无偏预测方法提高了自多倍体物种的基因组预测效率
阅读:9
作者:Song Hailiang, Zhang Qin, Hu Hongxia
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2024 | 起止号: | 2024 Jan 22; 25(2):bbae106 |
| doi: | 10.1093/bib/bbae106 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
