To improve the reliability and accuracy of dynamic machine in design process, high precision and efficiency of numerical computation is essential means to identify dynamic characteristics of mechanical system. In this paper, a new computation approach is introduced to improve accuracy and efficiency of computation for coupling vibrating system. The proposed method is a combination of piecewise constant method and Laplace transformation, which is simply called as Piecewise-Laplace method. In the solving process of the proposed method, the dynamic system is first sliced by a series of continuous segments to reserve physical attribute of the original system; Laplace transformation is employed to separate coupling variables in segment system, and solutions of system in complex domain can be determined; then, considering reverse Laplace transformation and residues theorem, solution in time domain can be obtained; finally, semi-analytical solution of system is given based on continuity condition. Through comparison of numerical computation, it can be found that precision and efficiency of numerical results with the Piecewise-Laplace method is better than Runge-Kutta method within same time step. If a high-accuracy solution is required, the Piecewise-Laplace method is more suitable than Runge-Kutta method.
Numerical calculation for coupling vibration system by Piecewise-Laplace method.
采用分段拉普拉斯法对耦合振动系统进行数值计算
阅读:3
作者:Fang Pan, Wang Kexin, Dai Liming, Zhang Chixiang
| 期刊: | Science Progress | 影响因子: | 2.900 |
| 时间: | 2020 | 起止号: | 2020 Jul-Sep;103(3):36850420938555 |
| doi: | 10.1177/0036850420938555 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
